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Abstract we propose a time series modeling approach based on nonlinear dynamical systems to recover
the underlying dynamics and predictability of streamflow and to produce projections with identifiable skill.
First, a wavelet spectral analysis is performed on the time series to identify the dominant quasiperiodic
bands. The time series is then reconstructed across these bands and summed to obtain a signal time series.
This signal is embedded in a D-dimensional space with an appropriate lag 7 to reconstruct the phase space in
which the dynamics unfolds. Time-varying predictability is assessed by quantifying the divergence of
trajectories in the phase space with time, using Local Lyapunov Exponents. Ensembles of projections from a
current time are generated by block resampling trajectories of desired projection length, from the K-nearest
neighbors of the current vector in the phase space. This modeling approach was applied to the naturalized
historical and paleoreconstructed streamflow at Lees Ferry gauge on the Colorado River, which offered three
interesting insights. (i) The flows exhibited significant epochal variations in predictability. (ii) The predictability
of the flow quantified by Local Lyapunov Exponent is related to the variance of the flow signal and

selected climate indices. (iii) Blind projections of flow during epochs identified as highly predictable showed
good skill in capturing the distributional and threshold exceedance statistics and poor performance during
low predictability epochs. The ability to assess the potential skill of these long lead projections opens
opportunities to perceive hydrologic predictability and consequently water management in a new paradigm.

1. Introduction

With increasing demand for water, such as in the Colorado River Basin (CRB), available water resources
have to be managed wisely to address possible supply-demand imbalances. Understanding the variability
and predictability of the river flow and the ability to generate realistic flow scenarios is vital in planning
and decision making in any river basin.

Linear models or parametric time series modeling techniques have been used traditionally for modeling and
simulating time series, especially streamflow (e.g., Salas et al., 1980). Parametric modeling techniques such
as Auto Regressive Moving Average model the time series as a sum of mean and random components, with
the mean component modeled as a linear function of past values. Simulations from these models reproduce
the distributional statistics such as mean, standard deviation, and lag correlations but do not represent non-
Gaussian and nonstationary features. Nonparametric time series models such as the K-nearest neighbor-
hood (K-NN) bootstrap (Lall, 1995; Lall & Sharma, 1996; Rajagopalan & Lall, 1998) and kernel density based
(Sharma et al., 1997) have been shown to be appropriate for non-Gaussian data but may not adequately
model low-frequency variability. For a review of parametric and nonparametric methods for hydrologic time
series modeling, we refer the reader to Rajagopalan et al. (2010). Simulation from wavelet spectra has been
proposed as a way to model the dominant periodicities (Kwon et al., 2007) and subsequently modified to cap-
ture nonstationarity (Nowak et al., 2011).

A nonlinear dynamical system-based time series modeling approach aims to reconstruct the underlying
dynamics, which is also referred as a phase space, and exploit it for prediction and simulation. The phase
space, or multidimensional space, within which the dynamics is purported to evolve, is reconstructed
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from the observed time series (Packard et al., 1980). A reconstructed phase space with appropriate dimen-
sion and time delay is a proxy for the true space within which the unknown dynamics of the system unfolds
(Takens, 1981). The state of the system at any time point can be mapped on to the phase space, and using
local maps (Farmer & Sidorowich, 1987), short-term forecasts are made. The skill of the forecasts depends
on the predictability of the current state of the system in the phase space unveiled through Local
Lyapunov Exponents (LLEs; Abarbanel et al., 1992; Guégan & Leroux, 2009; Kantz, 1994; Nese, 1989;
Wolf et al., 1985). Forecasts from this approach can outperform those from traditional time series
approaches (e.g., Casdagli et al., 1990; Elsner & Tsonis, 1992; Grassberger et al., 1991; Regonda et al.,
2005; Sangayomi et al., 1996; Tsonis, 1992) if the assumptions for a nonlinear dynamical system generating
the process are met. These methods require long time series data and have been applied widely in financial
and medical applications (e.g., Kantz & Schreiber, 1997, 1998) and to geophysical data.

One of the early applications to geophysical time series was to model and predict the rise and fall of the Great
Salt Lake water levels (Lall et al., 1996; Lall et al., 2006; Sangayomi et al., 1996), forecasting an index of El Nifio
Southern Oscillation (Regonda et al., 2005) followed by recent hydrologic applications (Kirchner, 2009;
Peterson & Western, 2014). These applications, especially of Great Salt Lake water levels, were made possible
due to low noise and long time series. For short and noisy time series, filtering is suggested to reduce the noise
(Gaoetal., 2010; Han et al., 2007; Hansen & Smith, 2001; Jaeger & Kantz, 1996; Porporato & Ridolfi, 1996, 1997;
Schreiber & Grassberger, 1991; Smith, 1992) and enable reconstruction of the dynamics.

For noise reduction, wavelet analysis (Torrence & Compo, 1998) is a robust option. We used this to smooth
the Colorado River flow to obtain the signal present in the flow series, which is then used in dynamics recov-
ery. Our approach in this paper introduces a blend of K-NN block simulation from the embedding of the sys-
tem recovered from the wavelet-reconstructed signal of the time series. The embedding requires a
determination of the delay time, 7, and embedding dimension, D, through the methods of Average Mutual
Information (AMI; Moon et al., 1995) and False Nearest Neighborhood (FNN; Abarbanel & Lall, 1996;
Kennel et al., 1992), respectively. The K-NN simulation technique is then applied on the feature vector in
the embedding space for the simulation. Details of the embedding and simulation algorithms are presented
in the methodology section.

In addition to ensemble forecasts using K-NN, we also identify time series epochs where we can characterize
predictability as a function of time through LLE (Abarbanel et al., 1992; Bailey & Nychka, 1995; Guégan &
Leroux, 2011). This is similar to the approach (Lall et al., 2006; Moon et al., 2008) where local prediction
error criteria such as local generalized cross validation and local generalized cross validation with leverage
were introduced and validated as a measure of potential predictability accounting for the predictive error
and predictive error accounting for asymmetry of the neighbors, respectively. The LLEs assess how the
separation of two initial points in the embedded space diverges or converges exponentially over a finite
future time interval. They are thus related to the conditional forecast variance but measure the rate of diver-
gence or change of variance in state space. The cross-validated sum of square of errors of a forecast as a func-
tion of forecast lead time is used to assess potential forecast skill. It includes a consideration of forecast bias
and variance. The LLEs measure divergence in a d-dimensional state space as the system evolves, and are
related to what we expect under forecasting, but are not derived using the forecasting algorithm. They are
considered as an intrinsic property of the dynamics that is estimated from the underlying attractor for a
given initial condition. Predictability is high when the initial condition is locally stable (LLE < 0, or small
positive), and low otherwise. The LLE thus informs the potential predictability at a given system state and
hence can inform system management decisions. We provide an application to the Lees Ferry flow data in
the CRB and illustrate performance for both predictable and nonpredictable time epochs. There are a num-
ber of studies that have used Lyapunov Exponents to assess the chaotic nature of hydroclimate time series
and local maps on the reconstructed phase space to enable short term forecasts (to cite a few, see, e.g.,
Dhanya & Nagesh Kumar, 2010; Elshorbagy et al., 2002; Islam & Sivakumar, 2002; Khatibi et al., 2012;
Liu et al., 1998; Rodriguez-Iturbe et al., 1989, and references there in). Here we use LLE for assessing multi-
decadal predictability, which complements research in literature.

The paper is organized as follows: It starts with a description of the data we used to demonstrate the applica-
tion of the proposed method; this is followed by the proposed methodology. Then, the results are presented
followed by a discussion and summary.
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Table 1
Historic and Paleodata Used in the Study and Links to Their Sources
Data Historic Paleoreconstructed
AMO (Climate index) http://www.esrl.noaa.gov/psd/data/ ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/
timeseries/ AMO/ reconstructions/amo-gray2004.txt
PDO (Climate index) http://jisao.washington.edu/pdo/PDO.latest ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/

Lees Ferry (Streamflow)

http://www.usbr.gov/Ic/region/g4000/

reconstructions/pdo-macdonald2005.txt
https://www.treeflow.info/

NaturalFlow/current.html

2. Study Data Sets

Historic and paleo data used in the study are listed in Table 1 along with links to their sources and are
described below. The primary data set is the naturalized streamflow at the Lees Ferry gauge on the CRB.
This is an important gauge on the river through which 85-90% of the flow in the basin passes.
Naturalized flow developed by removing anthropogenic reservoir effects (regulation and consumptive use)
is maintained by U.S. Bureau of Reclamation (Prairie & Callejo, 2005) and is available for the historic period
1906 to 2015 at monthly timescale. The annual values are calculated as average of the monthly values.
Paleoreconstructed flow (Woodhouse et al., 2006) is available at annual timescale for years 1490 to 1997.
The reconstructions are based on tree ring chronologies and capture ~80% of the variance of the historical
data at several locations on the CRB. We combined the two data sets—paleoreconstructed flows for the
1490-1905 period and the historic natural flows for 1906-2016—to obtain a long flow time series spanning
1497-2016, which is used for analysis in this research.

The Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) have been shown to
influence the low-frequency variability of the Colorado River flow (e.g., Bracken et al., 2014; Erkyihun et al.,
2016; Nowak et al., 2012). We use these two climate indices to understand the predictability of the Lees Ferry
flow. The AMO index (Enfield et al., 2001) is computed as a monthly area weighted average of North Atlantic
(0 to 70°N) sea surface temperatures (SSTs), which is subsequently detrended based on 5° X 5° resolution
Kaplan SST (Kaplan et al., 1998). Values were accessed from the NOAA Physical Sciences data website for
the period 1856 to present. The paleoreconstruction of annual AMO for the period 1650 to 1990, based on
reconstructions of annual SST anomalies for the North Atlantic Ocean (0 to 70°N) from tree rings (Gray
et al., 2004), was obtained from the NOAA website. Monthly PDO anomalies from 1900 to present are avail-
able from University of Washington. The annual data were taken as the average of the monthly values in this
analysis. The PDO is calculated as the first principal component of the Northern Pacific SST (Mantua et al.,
1997; Zhang et al., 1997). Annual PDO values for the period 993 to 1996, based on tree rings from Pinus flex-
ilis in California and Alberta, Canada, were generated by MacDonald and Case (2005) and are available from
the NOAA website.

3. Modeling Approach

Unlike traditional stochastic methods that consider the observed process to be a combination of a mean (i.e.,
signal) and a random component, the nonlinear dynamical approach considers the observed time series as
realizations of a dynamical system. Since the dynamical system is unknown, its recovery from the time series
involves reconstructing the phase space from observations. Theoretical results (e.g., Packard et al., 1980;
Takens, 1981) suggest a geometrical correspondence between appropriately reconstructed phase space from
the observations and the true space in which the unknown dynamics unfolds. The geometry of the recon-
structed space can provide insights into predictability, and local maps in the embedded space can be devel-
oped for skillful prediction and simulation. The proposed approach consists of four steps: (i) streamflow
signal extraction, (ii) computation of time delay and embedding dimension, (iii) predictability estimation
via local Lypunov exponents, and (iv) ensemble simulation. These steps are described below.

3.1. Streamflow Signal Extraction

Wavelet methods are widely used to decompose time series into signal and noise. An accessible description
of these methods is provided by Torrence and Compo (1998) in their review paper. Suppose x(t),t = 1,2,...,Nis
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the streamflow time series. The signal extraction from the time series involves four steps: (i) compute the
wavelet spectrum of the time series, x(t), (ii) identify spectral bands where the global variation meets a sta-
tistical significance test of being different from the background noise, (iii) reconstruct or project the time ser-
ies on to each of the bands that is significant, and (iv) sum each of the reconstructed series to recover the
signal. The Morlet is the preferred wavelet function for its boundary properties and its simplicity for discrete
time series applications. We used this wavelet to decompose the streamflow time series and for signal extrac-
tion. This approach for signal extraction has been applied to modeling and simulating the Colorado River
flow series (Erkyihun et al., 2016; Nowak et al., 2011) and for rainfall and temperature in Florida (Kwon
et al., 2007). We refer the reader to these papers and the review paper by Torrence and Compo (1998) for
details on wavelet analysis and signal extraction. The main steps in obtaining the reconstructed signal are
described below. Suppose that the frequency band of interest is defined as the interval {j;, j,}, then the recon-
structed time series within this band is obtained as

X = §8'? & R{W:(a)}

LCahy(0)5, a2 @

where Cs is a reconstruction factor and §; and &, are the scale-averaging coefficient and time factors, respec-
tively. 1o(0) = 7~ /* s the factor that removes the energy scaling specific to the Morlet wavelet function. R{.}
denotes the real part of W, the wavelet transform of the streamflow data, and q; is the scale; j, and j, are the
lower and upper scales, respectively. The temporal variance of the reconstructed band is quantified by the
Scaled Averaged Wavelet Power (SAWP) and is given by

2

Reconstruction is done for all the significant bands using the above procedure, and they are summed to
obtain the signal of the original time series. Similarly, the temporal variances are summed to obtain the
SAWP of the signal.

3.2. Time Delay and Embedding Dimension

Suppose x'(t),t = 1,2,...,N is the streamflow signal time series obtained from the wavelet decomposition and
extraction from the previous step. A D-dimensional embedding of this signal time series can be obtained
using a time delay of 7, which can be written as

Y, =x'(t),x'(t +1),.x'(t + (D-1)7);t =1,..,N—(D-1)7 3)

The two parameters D and 7 are estimated from the signal time series.

Real data sets are noisy (with dynamical and measurement errors). Therefore, estimates of the parameters
can be unreliable (Schreiber & Kantz, 1996) leading to phase space that has poor skill in forecast and simu-
lation. Smoothing can reduce the noise (Porporato & Ridolfi, 1996, 1997; Schreiber & Grassberger, 1991), but
if not done properly, it can alter the underlying dynamics (Sivakumar et al., 1999). Hence, we proposed to
first smooth the streamflow data using wavelets to extract the signal—described in the previous step—and
then estimate D and 7 for the signal.

The delay time 7 represents the average length of the memory in the system and can be considered as the
decorrelation timescale. This can be estimated from mutual information (MI) at various lags using two
dimensional histograms (Fraser & Swinney, 1986) or kernel density estimators (Moon et al., 1995). This is
tantamount to computing the nonlinear autocorrelation of a time series at various lags. The AMI at a lag
m is estimated as

N P(k). ¢ (k + m)
tn = 2 (00564 s e @

where P(x'(k),x'(k+m)) is the joint probability density function (PDF) and P(x'(k)),P(x'(k+m) are the mar-
ginal PDFs, estimated using kernel density estimators, and N is the number of observations. If 7 is too
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small, components in a delay vector are nearly identical, such that adding new components does not provide
new information. On the other hand, if 7 is too large, successive components are totally unrelated. Popular
choices for r include the first zero crossing of the autocorrelation function and the first minimum of mutual
information function (Fraser & Swinney, 1986). Here the average MI is computed for various lags, and the
time delay 7 is chosen as the lag of the first minimum of the AMI (Abarbanel & Lall, 1996). Typically, the
effectiveness of a model is not highly sensitive to the choice of r (Kantz & Schreiber, 1997) within the range
of minimum AMI or zero crossing of autocorrelation.

Two popular methods for estimating the embedding dimension, D, are the Grassberger-Procaccia
(Grassberger & Procaccia, 1983a, 1983b) approach, which estimates the dimension mostly as fractal or non-
integer, and the False Nearest Neighbor (FNN) method (Kennel et al., 1992), which computes an integer
dimension suitable for embedding. Here, we apply the FNN technique because it estimates the dimensions
as integers, suitable for determining the number of dimensions. This approach assumes that there is a mini-
mum sufficient dimension D that guarantees a one to one relation to the true/original space. For any dimen-
sion Dy < D, the one to one map to the original space will not be preserved because two or more points on the
original space will be mapped onto the same point (false neighbor) in the reconstructed D, dimensional
space. In other words, there is not enough room to reconstruct the one to one correspondence. In this
approach, the time series x’ (¢),t = 1,...,N is successively embedded in a Dy dimensional space. For each vector
at a current level of embedding, k-nearest neighbors are identified. Then a check is done as to how many of
these nearest neighbors are still nearest neighbors in the Dy, ; space. Those that fail to be neighbors are
called false neighbors. For each Dy, the fraction of false neighbors is computed as

;r<ry ©)

where y; and y; are two nearest neighbors in the D, dimensional space and Ily; — yjll is the distance between
them. Ily;41 — Y41l is their distance in dimension Dy.,. If the ratio r > r,, where r; is a heuristic threshold
(Kantz & Schreiber, 1997; Kennel et al., 1992), then Dy is increased and the computation is repeated until
the ratio condition is met or D, exceeds a reasonable value, in which case the conclusion is that the time ser-
ies may not correspond to a low dimensional dynamical system. In this study 7, is set to be 10. This threshold
declares two neighbors in the current embedding space as false neighbors if their distance exceeds 10 times
of that in the previous embedding dimension.

3.3. Predictability: Local Lyapunov Exponents

With the time delay embedding of the time series in the D-dimensional space (equation (3)) and plotting
them results in reconstructing the phase space of the system. Since each point in the D-dimensional phase
space corresponds to a time, the phase space represents the temporal evolution of the underlying process
of the time series. Predictability of the system is quantified using Lyapunov exponents (4). A Lyapunov expo-
nent (LE) measures the rate at which the initial separation of two points in the phase space (dy,) grows or
shrinks after an evolution of L time steps. If the separation grows, it indicates that the two initial points fol-
low trajectories that are diverging, indication that the system is unpredictable at L time steps. As mentioned,
the rate of growth, LE, is the measure of predictability. On the other hand, if the separation shrinks, the tra-
jectories of the initial points are converging, indicative of good predictability. The Lyapunov exponents A4(L)
can be computed for each dimension d (d = 1, ... D) and for several evolution periods L. For an evolution
period L and dimension d, LEs are calculated from all points in the phase space, and the average LE is com-
puted. Negative values of the exponents indicate convergence of the trajectories toward a locally stable point
and thus good predictability, while positive values indicate divergence of trajectories and less predictability.
The maximum value of the exponents among all dimensions will provide the predictability limit at a desired
evolution period L. For details on the calculations of LE we refer the readers to Abarbanel et al. (1992, 1993),
Bailey & Nychka (1995), Abarbanel and Lall (1996), Oseledec (1968), and Wolf et al. (1985).

The average LE described above provides an estimate of average predictability of the system over the entire
phase space. However, it is well known that predictability varies across the phase space, and thus, a single LE
cannot capture the variability in predictability. To address this, a LLE may be computed over a finite time
starting from any point in the time series, which corresponds to a vector in the embedded space. LLE
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Figure 1. The time series of the reconstructed and observed Lees Ferry Flows is in the top panel. Wavelet spectra of paleoreconstructed and observed Lees Ferry
flow are in the middle panel along with the global spectrum to its right. Periods that are significant at 90-95% confidence level are indicated. Signal time series
obtained as the summation of band-filtered components is shown in the bottom panel.

considers the evolution forward from nearby points in the embedded space to estimate the divergence or
convergence of trajectories in the embedded space corresponding to that initial condition. The LLE, A4(y,
L), can be computed for each point y in the phase space and for any corresponding time step, for a finite
evolution period, L, and for each embedding dimension d (d = 1, ... D). Thus, LLE can be obtained for
each L and d. For details on the calculations we refer the readers to the above references. The LLEs
provide an estimate of predictability at each point in the phase space (i.e., at each time) for a given L and
d, offering rich insight into the temporal variability of the predictability, which will be of immense help in
better understanding and modeling the system.

3.4. Ensemble Simulation

The simulation involves identifying nearest neighbors in the phase space of the signal and resampling a flow
trajectory. The implementation at any time ¢ proceeds as follows:

(1). Construct the phase space of the flow signal using the embedding dimension and delay obtained from
the methods described above.

(2). For the time ¢, the feature vector, y,, that represents the current state of the system in the embedded
phase space is selected; y, represents a point on the attractor.
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Figure 2. (a) Average Mutual Information of the signal time series of Lees
Ferry flow, corresponding to various lag time (in years). (b) Percentage of
False Nearest Neighbors corresponding to various embedding dimensions of
the signal time series of Lees Ferry flow.
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c (3). K-nearest neighbors (K-NN) of the feature vector in the embedded
2 & phase space are selected. Weights are assigned to the neighbors using
E ° a weight function that gives highest weight to the nearest neighbors
g = o and least to the farthest (Lall & Sharma, 1996; Rajagopalan & Lall,
g N T 1999). A heuristic value of K = /N is shown to work well.
s | " | | | | | (4). One of the nearest neighbors is selected using the weights. Suppose
1 2 3 4 5 6 7 8 the selected neighbor in the phase space corresponds to a point in
Lag times time, j.
§ (bg (5). The sequence or trajectory of the actual flow from time j+1 to j+M, i.
% \ e., x(j+1) to x(j+M) where M is the desired length of simulation is
% 3 selected to be the simulated flow sequence. This can be viewed as a
% ° conditional block bootstrap (Efron & Tibishirani, 1993).
; IS \ (6). This process is repeated 500 times to produce ensembles of trajec-
L._‘E o : °o——o 9 9 o ° tories (i.e., projections) of length M. Note that this is a blind simula-
& 1 2 3 4 5 6 7 8 tion technique in that only data prior to time ¢ are used in the

simulation.

Steps 5 and 6 differ from the traditional procedure wherein a local map
(e.g., local polynomial), fitted between the K-NN of the phase space
vectors and their one-step ahead successors, is used to provide a one-
step projection or forecast of the time series (e.g., Asefa et al., 2005;
Casdagli et al., 1990; Farmer & Sidorowich, 1987; Grassberger et al.,
1991; Lall et al., 1996, 2006; Regonda et al., 2005; Salas et al., 1980; Tsonis, 1992; Wei, 2006). Our block
bootstrapping approach allows for a multistep projection or forecast while preserving the trajectory con-
tinuity and accounting for the spread across trajectories. This overcomes the problem associated with
numerical diffusion that is often associated with iterated one-step ahead forecasts. Ensemble forecasting
by using a suite of D and v have been used for forecasting daily rainfall (Dhanya & Nagesh Kumar,
2010) and using wavelet network model (Dhanya & Nagesh Kumar, 2011). With high degree of noise
in daily hydrologic data applied in the above studies, estimates of D and 7 can be highly variable; thus,
this ensemble approach helps to stabilize the variance in the forecasts. In our modeling approach here,
using wavelet-filtered signal data, estimates of D and 7 are robust, enabling the application of block
resampling to generate ensembles.

4. Results

The nonlinear dynamics system identification, predictability, and simulation are demonstrated on the flow
at Lees Ferry in the CRB. Wavelet analysis of the long paleoreconstructed and historical Lees Ferry flow was
performed, and time-varying and global spectra are shown in Figure 1.

Four spectral bands are found to have variation that is significantly differ-
ent from background noise at the 95% confidence level: 57-87, 34-47, 19-
29, and 7-14 years. Furthermore, these spectral bands exhibit interesting
temporal modulation, for example, the 57-87- and 34-47-years bands
are dominant during 1500 to 1650 and post 1850; the 19-29-years band
is present mainly during 1650 to 1850; and the decadal band of 7-14 years
waxes and wanes throughout the length of the record with a strong pre-
sence in recent decades. By summing the information in these bands
together, we are recovering the joint variation across different organized
sources of information that have a low-frequency character and drop the
higher-frequency phenomena. The question, then, is whether this low-

frequency kernel modeled using nonlinear dynamics is able to provide
insights into the low-frequency evolution of the system into the future;
that is, given that we used signals with periods from 7 to 87 years, does
the modeling approach presented here inform the evolution of the mean

T T T T
16 20 32 64

Years

Figure 3. Average Local Lyapunov exponents (LLEs) of the Lees Ferry flow
signal for the three dimensions evaluated at various time steps or scale (also
referred to as L). Each symbol corresponds to a dimension.

flow and/or its variance over the next decade or two? This is what we
explore in this section.
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Figure 4. LLEs at each year with a time step of 20 years (a) for the three
dimensions for the Lees Ferry flow signal and (b) average LLEs at each
year (average of the LLE of the three dimensions in (a)) for the Lees Ferry
flow signal (black) and the SAWP of the flow signal (red). The value of the
exponent at each year corresponds to the average of following 20-year period
—similarly for the SAWP. The selected epochs of high predictability 1731-
1750, 1820-1839, and 1926-1945 are shown as blue dots, and the low-pre-
dictability epochs 1681-1700, 1841-1860, and 1970-1989 as red dots.

(@)

The AMI computed at various lags using the kernel density-based estima-
tors (Moon et al., 1995) is shown in Figure 2a. The first minimum is at lag
3, but we found a lag of 2 to be good at reconstructing the phase space (dis-
cussed later)—thus, we selected a time delay 7 of 2 years (Figure 2a). As
mentioned earlier, the model is generally insensitive to the choice of 7
within this range of low AMI (Fraser & Swinney, 1986). To identify the
best embedding dimension, D, the percentages of FNNs were computed
for various embedding dimensions and the selected D is shown in
Figure 2b. The FNN is almost zero for dimension of 3 and zero for 4. We
tried both and found no significant difference in the simulation skill and
Lyapunov exponents, so we chose D of 3 to be parsimonious.

LLEs of the Lees Ferry flow signal for various time steps or scales (referred
to as L) are shown in Figure 3. Note that the exponents remain constant
after L of 16 years. The average exponents corresponding to a large L,
say 64 years, are the global Lyapunov exponents—which are 0.27,
—0.03, and —0.53, respectively, in the three dimensions. Here 1, > 0,
which is an indicator of chaos and the first dimension (or direction), inhi-
bits predictability; 1, close to 0 tells us that this system can be modeled by
a set of differential equations; and A5 < 0 suggests that the third dimension
provides predictability. The predictability is dictated by the highest
Lyapunov exponent, as that leads to divergence of trajectories and, conse-
quently, reduced predictability (Abarbanel & Lall, 1996). The average glo-
bal Lyapunov exponent over the three dimensions for the entire phase
space is —0.1, indicating that the system is conservative. The value of

the largest exponent A; = 0.27 = 1/3.7 in units of year " suggests that on an average the errors along the orbit
or initial conditions grow as exp[t/3.7], so that after around 4 years or so, the predictability drops rapidly
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Figure 5. (a) Trajectories of epochs shown in the phase space—high predictable epochs 1788-1807 (red) and 1820-1839 (black), low predictable epochs 1681-1700
(blue) and 1841-1860 (green), and twentieth century epochs 1926-1945 (magenta) and 1970-1989 (brown). (b) and (c) show the trajectories of low and high

predictable epochs, respectively, with the starting points of the trajectories shown as dots. (d) and (e) show the trajectories of twentieth century epochs 1970-1989
and 1926-1945, respectively, with the starting points shown as dots.
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Figure 8. Projection ensembles (boxplot), median (blue), and the historic flows (red) for the high-predictability epochs
(a) 1731-1750 and (b) 1820-1839 and low predictability epochs (c) 1681-1700 and (d) 1841-1860.

(Abarbanel & Lall, 1996). However, this predictability varies substantially over time or over parts of the
phase space. To understand this, the time-varying LLE for a 20-year period (each value plotted is the average
of a following 20-year period) for the three dimensions are shown in Figure 4a and their average is shown in
Figure 4b. During epochs when the LLE of the first dimension—which is generally positive and inhibits long
lead predictability—is lower, the overall predictability of the system is enhanced. For example, consider the
period 1820-1839 when the average LLE is most negative—during this period 1,varies in the range of 0.05,
which indicates a predictability of ~20 years. At other epochs the predictability varies from 1 to 20 years. For
ease of demonstration we use the time-varying average LLE (Figure 4b) in selecting high- and low-
predictability epochs for simulation. The selected 20-year high-predictable epochs are 1731-1750 and
1820-1839, and a couple of low-predictability epochs selected are 1681-1700 and 1841-1860.

The temporal variability of predictability is seen from the time-varying average LLE (Figure 4b) along with
the temporal variability of the signal variance, SAWP, of the Lees Ferry flow signal. There are distinct epochs
where the average exponent is close to zero, indicative of reduced predictability, and where the average expo-
nent is highly negative, suggesting good predictability. Furthermore, the LLEs track the signal SAWP very
well, indicating that reduced predictability epochs coincide with increased signal variance and that good pre-
dictability epochs are consistent with reduced signal variance, which are quite intuitive. The predictability of
the Lees Ferry flow system waxes and wanes over time and is consistent with the variability of the signal,
which is very interesting and has significant implications for water resources management.

The embedding in the three dimensions is displayed in Figure 5. The attractor is in the form of a scroll with
the trajectories at the center representing the low frequencies, and the outer strands are period excursions at
even lower frequencies. This is similar to that seen in Abarbanel and Lall (1996) for the dynamics of the
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Figure 9. Boxplots of surplus and deficit statistics from flow projections for high-predictability epochs 1731-1750 and 1820-1839—(a) total surplus, (b) maximum
surplus, and (c) minimum surplus from the projections. The values from the historic flows are show as red dots. Boxplots of deficit statistics—(d) total deficit,
(e) maximum deficit, and (f) minimum deficit.

Great Salt Lake levels. To understand the evolution of these epochs in the phase space, the trajectories of
these epochs are plotted on the attractor and are shown in Figure 5. An interesting observation emerges
in that the low predictable (Figures 5a and 5b) epochs (1681-1700, 1841-1860, and 1970-1989) have their
trajectories excursing to the outer parts of the attractor where the LLEs are higher than inner parts of the
attractor, while the trajectories of high predictable (Figures 5b and 5c) epochs (1788-1807, 1820-1839, and
1926-1945) tend to stay within the inner parts of the attractor. However, the trajectory of the high
predictable epoch 1820-1839 does an excursion to the outer reaches of the attractor. This is because the
system transitions immediately to one of the lowest predictable epochs of 1841-1860; thus, the later part
of the 1820-1830 epoch is already in transition to being low predictable. These trajectories seem to suggest
that the outer portions of the attractor are less predictable and thus unstable, while the inner parts
provide higher predictability. Furthermore, the low predictable epochs (Figure 5b) appear to originate
from the outer reaches of the attractor while the high predictable epochs (Figure 5c) from the central part.
The trajectory of the epoch of the early part of twentieth century, 1926-1945 (Figure 5e), originates from
the center and stays there, while that of the recent epoch 1970-1989 (Figure 5d) has excursions to the
outer reaches. The characteristics of trajectories from the reconstructed phase space highlight the ability
of the nonlinear dynamical systems-based approach described and demonstrated above to capitalize on
the regime dynamics for skillful projections, unlike traditional time series methods.

An interesting question is what is the source of this predictability? Recent studies show the association
between AMO and PDO in modulating the variability of Lees Ferry flow (e.g., Bracken et al., 2014;
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Figure 10. Same as Figure 9 but for low-predictability epochs 1681-1700 and 1841-1860.

Nowak et al., 2012). As an initial rudimentary effort to answering this question we relate the variability of the
climate indices to Lees Ferry flow predictability. The SAWP of the signal of the climate indices, computed in
the same manner as that of the flow, is shown along with the average LLEs (Figures 6a—-6c). By visual
inspection, the variability of PDO and AMO seem to be out of phase with the predictability in that a
higher variance of climate signal leads to high negative values and, consequently, higher predictability.
This is clarified in Figure 6¢, which shows the average LLE along with the sum of the SAWP of signals of
both of the climate drivers. Spectral coherence between the SAWP of the Lees Ferry Flow and the SAWP
of AMO and PDO show strong coherence in the 2-4-year periods (figures not shown) suggesting a strong
link at higher frequency. The climate system is more predictable when the drivers have higher variability
(e.g., Kirtman & Schopf, 1998)—which then imparts predictability to regional hydrology. We recognize
that the linkage between variability in climate drivers and flow predictability is suggestive but not
quantitatively sound. This would require detailed analysis of the predictability of the climate drivers and
the use of climate models to understand the mechanisms that translate predictability from large-scale
climate to the flow. However, this linkage between climate drivers and Colorado River flow signal is quite
interesting, suggesting that the epochal natural of the predictability of Lees Ferry flow is orchestrated by
the variability in large-scale climate.

We tested the epochal nature of the projection skills on four selected 20-year epochs mentioned above—
high-predictability epochs, 1731-1750 and 1820-1839, and low-predictability epochs, 1681-1700 and
1841-1860. Blind projections were made for these 20-year periods using the block bootstrap method
(Erkyihun et al., 2016) and as described in the previous section. The PDFs of the flow simulations are shown
as gray along with their median PDF and that of the historic flows for the four epochs in Figure 7. The top
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panels (Figures 7a and 7b) show the PDFs of high-predictability epochs,
and it can be seen that the projections capture the PDF of the historic very
well. The PDFs of the projections from lower predictability epochs (bot-
tom panel, Figures 7c and 7d) misestimate the historic PDF. We recall that
the uncertainty in the PDFs of the epoch 1681-1700 (Figure 7c) is smaller
due to the fact that the projections are performed blind, in that data prior
to 1681, which is shorter, are used in the projections. A Kolmogrov-

Density
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' UL L Smirnov test suggested that the simulated and historical distributions of
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the high predictable epochs are indistinguishable and not the case for

flow (MAF)
low predictable epochs. The projection ensembles and the historic flows
Q Ju) are shown in Figure 8 in which it can be seen that during the predictable
: epochs (top panels, Figures 8a and 8b) the median of the ensembles (hor-
S izontal line in the boxes) tracks the variability of the historic flows (red
‘g o | line) quite well, but not well during the epochs with lower predictability
8 ° (bottom panels, Figures 8c and 8d). The uncertainty in the projections
§ B for the epoch 1681-1700 (Figure 8c) is smaller due to the reasons
8 explained above.
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112 3.8 648 916 1184 1586  19.88  23.9 26.58 An important utility of these projections is use in multidecadal water

flow (MAF) resources planning and management as in Erkyihun (2015). To this

end, the ability to capture aspects of sustained wet and dry periods is

Figure 11. PDFs of flow projection ensembles (gray), their median (blue),  crucial. Threshold crossing statistics of deficit and excess are computed
and that of historic flows (red) for (a) early twentieth century epoch 1926- for each ensemble based on the threshold of 15MAF (the long-term

1945 and (b) recent epoch 1970-1989.

average flow of the modern period). These are total excess and deficit

about this threshold and maximum and minimum excess and deficit
over the 20-year horizon. Flow values above this threshold indicate excess and below, deficit. For each
20-year horizon all the excess flows are added to get the total excess and, similarly, total deficit. We also
select the maximum and minimum excesses, and maximum and minimum deficits, over the 20-year per-
iod for each ensemble member. They are shown in Figure 9 as boxplots along with the corresponding
values from the historic flows as red dots for the excess (top panels) and deficit (bottom panels) for
the high-predictability epochs. The historic values (dots) of all statistics are well captured by the simula-
tions within the interquartile box of the simulations, and the excess and deficit minimum are oversimu-
lated. This indicates that excursions about the thresholds, which are higher-order statistics, are also
simulated very well; that will be of immense use in long-term water resources planning. In comparison,
the low-predictability epochs show poor performance of the excess and deficit statistics (Figure 10), with
most of the historic values outside the interquartile box of the simulations. These results suggest that the
predictability of the system dynamics permeates through all aspects of the system statistics. To further
assess the performance of the simulations in capturing wet and dry sequences, which are crucial for
water resources management, we also computed storage statistics using the sequent peak algorithm
(Loucks & Van Beek, 2005). The results are consistent with the performance of deficit and excess statis-
tics in that they are well captured in predictable epochs and poorly in low predictable epochs (figures
not shown).

The basin has experienced several impactful events starting in the early twentieth century—especially the
water sharing agreements among Basin States in the early part of twentieth century and the recent ongoing
drought in the western U.S. and in the basin for over a decade. Interestingly, the Lyapunov exponents are
quite negative during early twentieth century, indicative of high predictability, and the recent decades of
drought have low predictability (as the exponent values are closer to zero). To highlight these further, pro-
jections were made for two epochs from the last century, 1926-1945 and 1970-1989, for which the PDFs are
shown in Figure 11. Consistent with high predictability of the early part of twentieth century, the projections
capture the historic PDF very well. However, the PDFs of flow projections for the recent decades deviate sig-
nificantly from the historic PDF, consistent with low predictability. The historic flow variability (red) falls
within the interquartile range of the ensembles in most of the years, while in the later epoch (Figure 12b)
the historic flow is outside the interquartile range for most of the years, conspicuously so during the high-
flow period of 1982-1986.

RAJAGOPALAN ET AL.

6280



Water Resources Research 10.1029/2018WR023650

15 20 25 30

Flow (MAF)
10
l

5

0
|

T T T T T T T T T T T T I T T T T T T T
1926 1928 1930 1932 1934 1936 1938 1940 1942 1944

Year

15 20 25 30

Flow (MAF)

10
|

5
1

0
1

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988

Year

Figure 12. Projection ensembles (boxplot), median (blue), and the historic flows (red) for (a) early twentieth century
epoch 1926-1945 and (b) recent epoch 1970-1989.

5. Summary and Discussion

A novel approach to stochastic time series simulation is proposed, which is based on reconstructing the
phase space in which the dynamics of the time series unfolds. The approach also provides insights into epo-
chal variability of predictability of the time series. The phase space reconstruction requires embedding the
time series in appropriately estimated D dimensions with a time delay of 7. We made the assumption as in
Takens (1981) that this maps to the true phase space in which the underlying dynamics unfolds enabling
to take advantage of the system predictability to provide skillful projections and forecasts. Estimation of
the two parameters D and 7 from data with noise, especially of short geophysical time series, is often unreli-
able, and smoothing is suggested. We proposed obtaining the signal time series by wavelet filtering the ori-
ginal time series within significant frequency bands identified from wavelet spectral analysis. Thus, the
reconstructed phase space and the Lyapunov exponents are based on the signal component of the time ser-
ies. Lyapunov exponents measure the rate of divergence of trajectories in the reconstructed phase space pro-
viding an estimate of predictability—higher positive values indicating rapid divergence and thus lower
predictability and vice versa. The exponents can be computed locally in the phase space to provide temporal
variability of predictability. Projections from a time point ¢ involve (i) mapping the current state (or feature
vector) of the system on to the reconstructed phase space; (ii) identifying K-nearest neighbors of the current
feature vector; (iii) resampling one of them with a weight function that corresponds to a time j; and
(iv) selecting as the simulated flow projection the M-time step sequence (or trajectory) of the original time
series from the period j to j + M. Identifying the neighbors in the phase space of the smoothed series and
resampling the original time series is a new approach to stochastic time series simulation. This is repeated
to generate ensembles. Using data prior to time ¢ enables blind projections, which is implemented here.

We applied this modeling approach to the long paleo-reconstructed flow at Lees Ferry gauge, an important
location on the Colorado River, which represents 85-90% of its flow. Four dominant period bands in the 7- to
57-year range were identified from the wavelet spectrum analysis; filtering the flow series in these bands pro-
vided the signal time series. The reconstructed phase space showed an inner and outer scroll indicative of
lower and higher period variations. The global Lyapunov exponents were negative, suggesting that the signal
in the flow series is generally predictable. However, the LLEs showed significant epochal variations—with
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some epochs exhibiting high predictability (negative exponent values) and some low predictability (expo-
nent values close to zero). The early part of twentieth century when the Colorado River compact agreements
were negotiated was a high predictable epoch, and the recent decades with the prolonged and unprece-
dented drought in the observed record have low predictability. The predictability coincides with the tem-
poral variabilities of the signal variance—suggesting that periods of high signal variance impede
predictability and vice versa. Furthermore, the temporal variabilities of the signal variance of large-scale cli-
mate indices AMO and PDO also coincide with the temporal variability of the flow signal Lyapunov expo-
nents—indicating that large-scale climate features modulate flow predictability. Blind projections of
streamflows during high predictable epochs show good skill and capture all the distributional, drought,
and surplus statistics, while the low-predictability epochs had poor performance on these measures.

The method generally performs well for long time series with modest block size. A long time series is essen-
tial to adequately sample the underlying attractor, and the block size determines the prediction horizon.
Insights as to an appropriate block size to use can be obtained using the LLE and experimentation with
the time series. The time-varying predictability of the streamflow offers interesting insight into the system.
It suggests that low-predictability epochs are an inherent part of the dynamics of the system and likely resis-
tant to any improvements in modeling efforts—statistical or physical.

It is interesting to find that the recent epoch is likely a low predictable epoch with the confluence of
increased variability in the streamflow and in the large-scale climate drivers while the early epoch of the
twentieth century when the Colorado River compacts were instituted was a high predictable epoch. This also
provokes the tantalizing idea that perhaps water resources management should adapt in a flexible manner to
these predictability epochs. The LLEs could be modeled as a time series, and projections of low-predictability
epochs and high-predictability epochs could trigger appropriate management and planning responses. This
study opens opportunities to perceive hydrologic predictability and consequently water management in a
new paradigm.
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